Constacyclic codes of length $4p^s$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$
نویسندگان
چکیده
Let p be an odd prime, s,m be positive integers and Fpm be the finite field with p m elements. In this paper, we determine all constacyclic codes of length 4p over the finite commutative chain ring R = Fpm + uFpm with unity, where u 2 = 0. We also determine their dual codes and list some isodual constacyclic codes of length 4p over R.
منابع مشابه
Repeated Root Constacyclic Codes of Length $mp^s$ over $\mathbb{F}_{p^r}+u \mathbb{F}_{p^r}+...+ u^{e-1}\mathbb{F}_{p^r}$
We give the structure of λ-constacyclic codes of length pm over R = Fpr +uFpr + . . .+uFpr with λ ∈ F ∗ pr . We also give the structure of λ-constacyclic codes of length pm with λ = α1 + uα2 + . . .+ u αe−1, where α1, α2 6= 0 and study the self-duality of these codes.
متن کاملAll $\alpha+u\beta$-constacyclic codes of length $np^{s}$ over $\mathbb{F}_{p^{m}}+u\mathbb{F}_{p^{m}}$
Let Fpm be a finite field with cardinality p and R = Fpm + uFpm with u = 0. We aim to determine all α + uβ-constacyclic codes of length np over R, where α, β ∈ Fpm , n, s ∈ N+ and gcd(n, p) = 1. Let α0 ∈ F ∗ pm and α s 0 = α. The residue ring R[x]/〈x np − α − uβ〉 is a chain ring with the maximal ideal 〈x − α0〉 in the case that x n − α0 is irreducible in Fpm[x]. If x−α0 is reducible in Fpm[x], w...
متن کاملA Note on Hamming distance of constacyclic codes of length $p^s$ over $\mathbb F_{p^m} + u\mathbb F_{p^m}$
For any prime p, λ-constacyclic codes of length p over R = Fpm + uFpm are precisely the ideals of the local ring Rλ = R[x] 〈xp−λ〉 , where u = 0. In this paper, we first investigate the Hamming distances of cyclic codes of length p over R. The minimum Hamming distances of all cyclic codes of length p over R are determined. Moreover, an isometry between cyclic and α-constacyclic codes of length p...
متن کاملConstacyclic codes of length $p^sn$ over $\mathbb{F}_{p^m}+u\mathbb{F}_{p^m}$
Let Fpm be a finite field of cardinality p m and R = Fpm[u]/〈u 〉 = Fpm +uFpm (u = 0), where p is a prime and m is a positive integer. For any λ ∈ Fpm, an explicit representation for all distinct λ-constacyclic codes over R of length pn is given by a canonical form decomposition for each code, where s and n are positive integers satisfying gcd(p, n) = 1. For any such code, using its canonical fo...
متن کامل$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$
Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1707.06133 شماره
صفحات -
تاریخ انتشار 2017